1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
|
//
// Created by Keuin on 2022/4/11.
//
#ifndef RT_VEC_H
#define RT_VEC_H
#include <cmath>
#include <random>
#include <ostream>
#include <cassert>
static inline bool eq(int a, int b) {
return a == b;
}
static inline bool eq(long long a, long long b) {
return a == b;
}
static inline bool eq(double a, double b) {
// FIXME broken on large values
// https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
// https://stackoverflow.com/a/253874/14332799
const double c = a - b;
return c <= 1e-14 && c >= -1e-14;
}
// 3-dim vector
template<typename T>
struct vec3 {
T x;
T y;
T z;
static vec3 zero() {
return vec3{0, 0, 0};
}
static vec3 one() {
return vec3{1, 1, 1};
}
bool is_zero() const {
#define EPS (1e-8)
return x >= -EPS && y >= -EPS && z >= -EPS && x <= EPS && y <= EPS && z <= EPS;
#undef EPS
}
bool is_one() const {
return (*this - vec3::one()).is_zero();
}
vec3 operator+(const vec3 &b) const {
return vec3{.x=x + b.x, .y=y + b.y, .z=z + b.z};
}
vec3 operator-() const {
return vec3{.x = -x, .y = -y, .z = -z};
}
vec3 operator-(const vec3 &b) const {
return *this + (-b);
}
bool operator==(const vec3 b) const {
return eq(x, b.x) && eq(y, b.y) && eq(z, b.z);
}
// dot product (aka inner product, or scalar product, producing a scalar)
T dot(const vec3 &b) const {
return x * b.x + y * b.y + z * b.z;
}
// cross product (aka outer product, or vector product, producing a vector)
vec3 cross(const vec3 &b) const {
return vec3{.x=y * b.z - z * b.y, .y=x * b.z - z * b.x, .z=x * b.y - y * b.x};
}
// Multiply with b on every dimension.
vec3 scale(const vec3 &b) const {
return vec3{.x=x * b.x, .y=y * b.y, .z=z * b.z};
}
// norm value
double norm(const int level = 2) const {
if (level == 2) {
return std::abs(sqrt(x * x + y * y + z * z));
} else if (level == 1) {
return std::abs(x) + std::abs(y) + std::abs(z);
} else {
return powl(powl(x, level) + powl(y, level) + powl(z, level), 1.0 / level);
}
}
// Squared module
T mod2() const {
return x * x + y * y + z * z;
}
vec3 unit_vec() const {
return *this * (1.0 / norm());
}
// Get the reflected vector. Current vector is the normal vector (length should be 1), v is the incoming vector.
vec3 reflect(const vec3 &v) const {
assert(fabs(mod2() - 1.0) < 1e-8);
return v - (2.0 * dot(v)) * (*this);
}
};
// print to ostream
template<typename T>
inline std::ostream &operator<<(std::ostream &out, const vec3<T> &vec) {
return out << "vec3[x=" << vec.x << ", y=" << vec.y << ", z=" << vec.z << ']';
}
// product vec3 by a scalar
template<
typename T,
typename S,
typename = typename std::enable_if<std::is_arithmetic<S>::value, S>::type
>
inline vec3<T> operator*(const vec3<T> &vec, const S &b) {
return vec3<T>{.x=(T) (vec.x * b), .y=(T) (vec.y * b), .z=(T) (vec.z * b)};
}
// product vec3 by a scalar
template<
typename T,
typename S,
typename = typename std::enable_if<std::is_arithmetic<S>::value, S>::type
>
inline vec3<T> operator*(const S &b, const vec3<T> &vec) {
return vec3<T>{.x=(T) (vec.x * b), .y=(T) (vec.y * b), .z=(T) (vec.z * b)};
}
// product vec3 by the inversion of a scalar (div by a scalar)
template<
typename T,
typename S,
typename = typename std::enable_if<std::is_arithmetic<S>::value, S>::type
>
inline vec3<T> operator/(const vec3<T> &vec, const S &b) {
return vec3<T>{.x=(T) (vec.x / b), .y=(T) (vec.y / b), .z=(T) (vec.z / b)};
}
// scalar product (inner product)
template<typename T>
inline T dot(const vec3<T> &a, const vec3<T> &b) {
return a.dot(b);
}
// vector product (outer product)
template<typename T>
inline vec3<T> cross(const vec3<T> &a, const vec3<T> &b) {
return a.cross(b);
}
// 3-dim vector (int)
using vec3i = vec3<int>;
// 3-dim vector (long long)
using vec3l = vec3<long long>;
// 3-dim vector (float)
using vec3f = vec3<float>;
// 3-dim vector (double)
using vec3d = vec3<double>;
// random unit vector generator
template<typename T>
class rand_vec_gen {
std::mt19937_64 mt;
std::uniform_real_distribution<T> uni{-1.0, 1.0};
public:
rand_vec_gen() = delete;
explicit rand_vec_gen(uint64_t seed) : mt{seed} {}
// Get a random vector whose length is in [0, 1]
inline vec3<T> range01() {
while (true) {
const auto x = uni(mt), y = uni(mt), z = uni(mt);
const auto vec = vec3<T>{.x=x, .y=y, .z=z};
if (vec.mod2() <= 1.0) return vec.unit_vec();
}
}
// Get a unit vector with random direction.
inline vec3<T> normalized() {
return range01().unit_vec();
}
// Get a random vector whose length is in [0, 1] and
// has a direction difference less than 90 degree with given vector.
inline vec3<T> hemisphere(vec3<T> &vec) {
const auto v = range01();
if (dot(v, vec) > 0) return v;
return -v;
}
};
using random_uv_gen_3d = rand_vec_gen<double>;
#endif //RT_VEC_H
|