1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
|
//
// Created by Keuin on 2022/4/15.
//
#include "material.h"
bool material_diffuse_lambertian::scatter(ray3d &r, const object &hit_obj, double hit_t, random_uv_gen_3d &ruvg) const {
const auto hit_point = r.at(hit_t); // hit point, on the surface
auto nv = hit_obj.normal_vector(hit_point);
if (dot(nv, r.direction()) > 0) return false; // discard rays from inner (or invert nv)
auto d = nv + ruvg.normalized();
if (d.is_zero()) d = nv;
vec3d diffuse_target = hit_point + d;
r.decay(albedo); // lose some light when diffused
r.source(hit_point);
r.direction((diffuse_target - hit_point).unit_vec()); // the new diffused ray we trace on
return true;
}
material_diffuse_lambertian::material_diffuse_lambertian(vec3d albedo) : albedo(albedo) {
assert(albedo.mod2() >= 0);
assert(albedo.mod2() <= 1);
}
material_diffuse_lambertian::material_diffuse_lambertian(double albedo) : albedo{albedo, albedo, albedo} {
assert(albedo >= 0);
assert(albedo <= 1);
}
material_diffuse_simple::material_diffuse_simple(vec3d albedo) : albedo(albedo) {
assert(albedo.mod2() >= 0);
assert(albedo.mod2() <= 1);
}
bool material_diffuse_simple::scatter(ray3d &r, const object &hit_obj, double hit_t, random_uv_gen_3d &ruvg) const {
const auto hit_point = r.at(hit_t); // hit point, on the surface
auto nv = hit_obj.normal_vector(hit_point);
if (dot(nv, r.direction()) > 0) return false; // discard rays from inner (or invert nv)
auto d = nv + ruvg.normalized();
if (d.is_zero()) d = nv;
vec3d diffuse_target = hit_point + nv + ruvg.range01();
r.decay(albedo); // lose some light when diffused
r.source(hit_point);
r.direction((diffuse_target - hit_point).unit_vec()); // the new diffused ray we trace on
return true;
}
material_diffuse_simple::material_diffuse_simple(double albedo) : albedo{albedo, albedo, albedo} {
assert(albedo >= 0);
assert(albedo <= 1);
}
material_diffuse_hemispherical::material_diffuse_hemispherical(vec3d albedo) : albedo(albedo) {
assert(albedo.mod2() >= 0);
assert(albedo.mod2() <= 1);
}
bool
material_diffuse_hemispherical::scatter(ray3d &r, const object &hit_obj, double hit_t, random_uv_gen_3d &ruvg) const {
const auto hit_point = r.at(hit_t); // hit point, on the surface
auto nv = hit_obj.normal_vector(hit_point);
if (dot(nv, r.direction()) > 0) return false; // discard rays from inner (or invert nv)
auto d = nv + ruvg.normalized();
if (d.is_zero()) d = nv;
vec3d diffuse_target = hit_point + ruvg.hemisphere(nv);
r.decay(albedo); // lose some light when diffused
r.source(hit_point);
r.direction((diffuse_target - hit_point).unit_vec()); // the new diffused ray we trace on
return true;
}
material_diffuse_hemispherical::material_diffuse_hemispherical(double albedo) : albedo{albedo, albedo, albedo} {
assert(albedo >= 0);
assert(albedo <= 1);
}
|