1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
|
//
// Created by Keuin on 2022/4/11.
//
#include <cstdint>
#include <iostream>
#include <vector>
#include <limits>
#include <memory>
#include <cstdlib>
#include "vec.h"
#include "ray.h"
#include "bitmap.h"
#include "timer.h"
#define DEMO_BALL
class object {
public:
// Will the given ray hit. Returns time t if hits in range [t1, t2].
virtual bool hit(const ray3d &r, double &t, double t1, double t2) const = 0;
// With t2 = infinity
inline bool hit(const ray3d &r, double &t, double t1) const {
return hit(r, t, t1, std::numeric_limits<double>::infinity());
}
// Given a point on the surface, returns the normalized outer normal vector on that point.
virtual vec3d normal_vector(const vec3d &where) const = 0;
// object color, currently not parameterized
virtual pixel8b color() const = 0;
// subclasses must have virtual destructors
virtual ~object() = default;
};
class sphere : public object {
vec3d center;
double radius;
public:
sphere() = delete;
sphere(const vec3d ¢er, double radius) : center(center), radius(radius) {}
~sphere() override = default;
vec3d normal_vector(const vec3d &where) const override {
// We assume the point is on surface, speeding up the normalization
return (where - center) / radius;
}
bool hit(const ray3d &r, double &t, double t1, double t2) const override {
// Ray: {Source, Direction, time}
// Sphere: {Center, radius}
// sphere hit formula: |Source + Direction * time - Center| = radius
// |(Sx + Dx * t - Cx, Sy + Dy * t - Cy, Sz + Dz * t - Cz)| = radius
const auto c2s = r.source() - center; // center to source
// A = D dot D
const double a = r.direction().mod2();
// H = (S - C) dot D
const auto h = dot(c2s, r.direction());
// B = 2H ( not used in our optimized routine )
// C = (S - C) dot (S - C) - radius^2
const double c = c2s.mod2() - radius * radius;
// 4delta = H^2 - AC
// delta_q = H^2 - AC (quarter delta)
const double delta_q = h * h - a * c;
bool hit = false;
if (delta_q >= 0) {
// return the root in range [t1, t2]
// t = ( -H +- sqrt{ delta_q } ) / A
double root;
root = (-h - sqrt(delta_q)) / a;
if (root >= t1 && root <= t2) {
hit = true;
t = root;
} else {
root = (-h + sqrt(delta_q)) / a;
if (root >= t1 && root <= t2) {
hit = true;
t = root;
}
}
}
return hit;
}
pixel8b color() const override {
return pixel8b::from_normalized(1.0, 0.0, 0.0);
}
};
class viewport {
double half_width, half_height; // viewport size
vec3d center; // coordinate of the viewport center point
std::vector<std::shared_ptr<object>> objects; // TODO move to world class
// Given a ray from the camera, generate a color the camera seen on the viewport.
pixel8b color(const ray3d &r) {
// Detect hits
bool hit = false;
double hit_t = std::numeric_limits<double>::infinity();
std::shared_ptr<object> hit_obj;
// Check the nearest object we hit
for (const auto &obj: objects) {
double t_;
if (obj->hit(r, t_, 0.0) && t_ < hit_t) {
hit = true;
hit_t = t_;
hit_obj = obj;
}
}
if (hit) {
// normal vector on hit point
const auto nv = hit_obj->normal_vector(r.at(hit_t));
// return obj->color();
// visualize normal vector at hit point
return pixel8b::from_normalized(nv);
}
// Does not hit anything. Get background color (infinity)
const auto u = (r.direction().y + 1.0) * 0.5;
return mix(
pixel8b::from_normalized(1.0, 1.0, 1.0),
pixel8b::from_normalized(0.5, 0.7, 1.0),
1.0 - u,
u
);
}
public:
viewport() = delete;
viewport(double width, double height, vec3d viewport_center) :
half_width(width / 2.0), half_height(height / 2.0), center(viewport_center) {}
// Add an object to the world.
void add_object(std::shared_ptr<object> &&obj) {
objects.push_back(std::move(obj));
}
// Generate the image seen on given viewpoint.
bitmap8b render(vec3d viewpoint, uint16_t image_width, uint16_t image_height) {
bitmap8b image{image_width, image_height};
const auto r = center - viewpoint;
const int img_hw = image_width / 2, img_hh = image_height / 2;
// iterate over every pixel on the image
for (int j = -img_hh + 1; j <= img_hh; ++j) { // axis y, transformation is needed
for (int i = -img_hw; i < img_hw; ++i) { // axis x
const vec3d off{
.x=1.0 * i / img_hw * half_width,
.y=1.0 * j / img_hh * half_height,
.z=0.0
}; // offset on screen plane
const auto dir = r + off; // direction vector from camera to current pixel on screen
const ray3d ray{viewpoint, dir}; // from camera to pixel (on the viewport)
const auto pixel = color(ray);
image.set(i + img_hw, -j + img_hh, pixel);
}
}
return image;
}
};
void generate_image(uint16_t image_width, uint16_t image_height, double viewport_width, double focal_length,
double sphere_z, double sphere_r, const std::string &caption = "", unsigned caption_scale = 1) {
double r = 1.0 * image_width / image_height;
viewport vp{viewport_width, viewport_width / r, vec3d{0, 0, -focal_length}};
vp.add_object(std::make_shared<sphere>(
vec3d{0, -100.5, -1},
100)); // the earth
vp.add_object(std::make_shared<sphere>(vec3d{0, 0, sphere_z}, sphere_r));
timer tm;
tm.start_measure();
auto image = vp.render(vec3d::zero(), image_width, image_height); // camera position as the coordinate origin
tm.stop_measure();
if (!caption.empty()) {
image.print(caption,
pixel8b::from_normalized(1.0, 0.0, 0.0),
10, 10, caption_scale, 0.8);
}
if (!std::getenv("NOPRINT")) {
image.write_plain_ppm(std::cout);
} else {
std::cerr << "NOPRINT is defined. PPM Image won't be printed." << std::endl;
}
}
int main(int argc, char **argv) {
if (argc != 7 && argc != 8) {
printf("Usage: %s <image_width> <image_height> <viewport_width> <focal_length> <sphere_z> <sphere_r>\n",
argv[0]);
return 0;
}
std::string iw{argv[1]}, ih{argv[2]}, vw{argv[3]}, fl{argv[4]}, sz{argv[5]}, sr{argv[6]}, cap{};
if (argc == 8) {
// with caption
cap = std::string{argv[7]};
}
const auto image_width = std::stoul(iw);
generate_image(image_width, std::stoul(ih),
std::stod(vw), std::stod(fl),
std::stod(sz), std::stod(sr), cap,
std::max((int)(1.0 * image_width * 0.015 / 8), 1));
}
|