summaryrefslogtreecommitdiff
path: root/main_final_render.cpp
blob: c2c44cad791587af90153908ec533ebbec2ad9fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
//
// Created by Keuin on 2022/4/21.
//

// include M_PI from cmath when using MSVC
#define _USE_MATH_DEFINES

#include "viewport.h"
#include "hitlist.h"
#include "aa.h"
#include "bitmap.h"

#include "material_diffusive.h"
#include "material_reflective.h"
#include "material_dielectric.h"

#include "sphere.h"

#include "timer.h"

#include <random>
#include <memory>
#include <vector>
#include <string>

template<typename T_Color, typename T_Coord>
class final_scene {
    hitlist world;
    std::vector<material *> materials;
public:
    explicit final_scene(uint64_t seed);

    ~final_scene() {
        for (material *item: materials) {
            delete item;
        }
    }

    bitmap<T_Color> render(uint32_t image_width, uint32_t image_height, uint32_t spp) {
        aa_viewport<T_Color, T_Coord> camera{
                {13, 2, 3},
                {6.5, 1, 1.5}, //{0, 0, 0},
                static_cast<uint16_t>(image_width),
                static_cast<uint16_t>(image_height),
                28.0 * (M_PI / 180.0),
                0.025,
                2.432043413435534,
                world,
                spp
        };
        return camera.render();
    }
};

template<typename T_Color, typename T_Coord>
final_scene<T_Color, T_Coord>::final_scene(uint64_t seed) : world{} {
    std::mt19937_64 rand{seed};
    std::uniform_real_distribution<double> uni{0, 1};
    material *m_ball;

    // shared materials
    const auto m_glass = new material_dielectric{1.5};
    materials.push_back(m_glass);

    // earth
    m_ball = new material_diffuse_lambertian{{0.5, 0.5, 0.5}};
    world.add_object(std::make_shared<sphere>(vec3d{0, -1000, 0}, 1000.0, *m_ball));
    materials.push_back(m_ball);

    // add random small balls
    for (int i = -11; i < 11; ++i) {
        for (int j = -11; j < 11; ++j) {
            double rv = uni(rand);
            vec3d center{i + 0.9 * uni(rand), 0.2, j + 0.9 * uni(rand)};

            if ((center - vec3d{4, 0.2, 0}).norm() > 0.9) {

                if (rv < 0.8) {
                    // diffuse
                    const auto albedo = vec3d{
                            uni(rand) * uni(rand),
                            uni(rand) * uni(rand),
                            uni(rand) * uni(rand)
                    };
                    m_ball = new material_diffuse_lambertian{albedo};
                    world.add_object(std::make_shared<sphere>(center, 0.2, *m_ball));
                    materials.push_back(m_ball);
                } else if (rv < 0.95) {
                    // metal
                    auto albedo = vec3d{
                            0.5 * uni(rand) + 0.5,
                            0.5 * uni(rand) + 0.5,
                            0.5 * uni(rand) + 0.5
                    };
                    auto fuzz = 0.5 * uni(rand);
                    m_ball = new material_fuzzy_reflective{albedo, fuzz};
                    world.add_object(std::make_shared<sphere>(center, 0.2, *m_ball));
                    materials.push_back(m_ball);
                } else {
                    // glass
                    world.add_object(std::make_shared<sphere>(center, 0.2, *m_glass));
                }
            }
        }
    }

    // add three big balls
    material *mat;
    mat = new material_dielectric{1.5};
    world.add_object(std::make_shared<sphere>(
            vec3d{0, 1, 0},
            1.0,
            *mat
    ));
    materials.push_back(mat);

    mat = new material_diffuse_lambertian{{0.4, 0.2, 0.1}};
    world.add_object(std::make_shared<sphere>(
            vec3d{-4, 1, 0},
            1.0,
            *mat
    ));
    materials.push_back(mat);

    mat = new material_reflective{{0.7, 0.6, 0.5}}; // not fuzzy
    world.add_object(std::make_shared<sphere>(
            vec3d{4, 1, 0},
            1.0,
            *mat
    ));
    materials.push_back(mat);
}


int main(int argc, char *argv[]) {
    if (argc != 4) {
        printf("%s <image_width> <image_height> <sample_per_pixel>\n", argv[0]);
        return 0;
    }
    const bool no_print = std::getenv("NOPRINT") != nullptr;
    if (no_print) {
        std::cerr << "NOPRINT is set. Result image won't be printed to STDOUT." << std::endl;
    }
    std::string s_image_width{argv[1]}, s_image_height{argv[2]}, s_spp{argv[3]};
    uint32_t image_width = std::stoul(s_image_width);
    uint32_t image_height = std::stoul(s_image_height);
    uint32_t spp = std::stoul(s_spp);
    std::cerr << "image size: " << image_width << "*" << image_height << std::endl
              << "spp: " << spp << std::endl;

    final_scene<uint16_t, double> scene{0x793def6344ef29d4};
    timer tm;
    std::cerr << "Start rendering..." << std::endl;
    tm.start_measure();
    const auto image = scene.render(image_width, image_height, spp);
    tm.stop_measure();
    std::cerr << "Apply gamma2 correction..." << std::endl;
    tm.start_measure();
    const auto image2 = image.gamma2();
    tm.stop_measure();
    if (!no_print) image2.write_plain_ppm(std::cout);
}