1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
|
//
// Created by Keuin on 2022/4/12.
//
#ifndef RT_HITLIST_H
#define RT_HITLIST_H
#include "viewport.h"
#include "timer.h"
#include "bitmap.h"
#include "ray.h"
#include "vec.h"
#include "object.h"
#include <cstdlib>
#include <memory>
#include <limits>
#include <vector>
#include <iostream>
#include <cstdint>
//#define T_SIMPLE_COLOR
//#define T_NORM_VISUAL
#define T_DIFFUSE
// Select which diffuse method to use
//#define DIFFUSE_SIMPLE // Diffuse with a random vector whose length is in [0, 1]
#define DIFFUSE_LR // Diffuse with (possibly wrong) Lambertian Reflection, i.e. using a random unit vector
//#define DIFFUSE_HEMI // Diffuse with hemispherical scattering, i.e. using a normalized random vector within the hemisphere
// A world, T is color depth
template<typename T>
class hitlist {
std::vector<std::shared_ptr<object>> objects;
public:
hitlist() = default;
hitlist(hitlist &other) = delete; // do not copy the world
// Add an object to the world.
void add_object(std::shared_ptr<object> &&obj) {
objects.push_back(std::move(obj));
}
// Given a ray, compute the color.
pixel<T> color(ray3d r, random_uv_gen_3d &ruvg, uint_fast32_t max_recursion_depth = 64) const {
double decay = 1;
while (max_recursion_depth-- > 0) {
// Detect hits
bool hit = false;
double hit_t = std::numeric_limits<double>::infinity();
std::shared_ptr<object> hit_obj;
// Check the nearest object we hit
for (const auto &obj: objects) {
double t_;
// Fix the Shadow Acne problem
// Some diffused rays starts off from a point on the surface,
// while hit the surface very quickly at some small t like +-1e-10 or so.
// This decays the ray by accident, causing black pixels on the output image.
// We simply drop hits very near the surface
// (i.e. t is a very small positive number) to solve this problem.
static constexpr double t_min = 1e-8;
if (obj->hit(r, t_, t_min) && t_ < hit_t) {
hit = true;
hit_t = t_;
hit_obj = obj;
}
}
if (hit) {
#ifdef T_SIMPLE_COLOR
// simply returns color of the object
return hit_obj->color();
#endif
#ifdef T_NORM_VISUAL
// normal vector on hit point
const auto nv = hit_obj->normal_vector(r.at(hit_t));
// visualize normal vector at hit point
return pixel<T>::from_normalized(nv);
#endif
#ifdef T_DIFFUSE
const auto hit_point = r.at(hit_t); // hit point, on the surface
auto nv = hit_obj->normal_vector(hit_point);
if (dot(nv, r.direction()) > 0) return pixel<T>::black(); // discard rays from inner (or invert nv)
#ifdef DIFFUSE_SIMPLE
vec3d diffuse_target = hit_point + nv + ruvg.range01();
#endif
#ifdef DIFFUSE_LR
vec3d diffuse_target = hit_point + nv + ruvg.normalized();
#endif
#ifdef DIFFUSE_HEMI
vec3d diffuse_target = hit_point + ruvg.hemisphere(nv);
#endif
decay *= 0.5; // lose 50% light when diffused
r = ray3d{hit_point, diffuse_target - hit_point}; // the new diffused ray we trace on
continue;
#endif
}
// Does not hit anything. Get background color (infinity)
const auto u = (r.direction().y + 1.0) * 0.5;
const auto c = mix(
pixel<T>::from_normalized(1.0, 1.0, 1.0),
pixel<T>::from_normalized(0.5, 0.7, 1.0),
1.0 - u,
u
);
#ifdef T_DIFFUSE
return decay * c;
#else
return c;
#endif
}
return pixel<T>::black(); // reached recursion time limit, very little light
}
};
using hitlist8b = hitlist<uint8_t>;
#endif //RT_HITLIST_H
|