diff options
Diffstat (limited to 'vec.h')
-rw-r--r-- | vec.h | 55 |
1 files changed, 50 insertions, 5 deletions
@@ -9,6 +9,7 @@ #include <random> #include <ostream> #include <cassert> +#include <algorithm> static inline bool eq(int a, int b) { return a == b; @@ -102,11 +103,46 @@ struct vec3 { return *this * (1.0 / norm()); } + // If all the three float-point scalars are finite real number. + bool valid() const { + return std::isfinite(x) && std::isfinite(y) && std::isfinite(z); + } + // Get the reflected vector. Current vector is the normal vector (length should be 1), v is the incoming vector. vec3 reflect(const vec3 &v) const { assert(fabs(mod2() - 1.0) < 1e-8); return v - (2.0 * dot(v)) * (*this); } + + // Get the refracted vector. Current vector is the normal vector (length should be 1), + // r1 is the incoming vector, ri_inv is the relative refraction index n2/n1, + // where n2 is the destination media's refraction index, and n1 is the source media's refraction index. + // TIR (Total Internal Reflection) is optionally enabled by macro TIR_OR and TIR_OFF. + // If TIR happens, the ray will be reflected. + template<bool Enable_TIR> + vec3 refract(const vec3 &r1, double ri_inv) const { + assert(fabs(mod2() - 1.0) < 1e-12); + assert(fabs(r1.mod2() - 1.0) < 1e-12); + assert(ri_inv > 0); + assert(dot(r1) < 0); // normal vector must be on the same side + const auto &n = *this; // normal vector + const auto m_cos1 = std::max(dot(r1), (T) (-1)); // cos(a1), a1 is the incoming angle +// assert(m_cos1 <= 0); // incoming angle must smaller than 90deg + const auto c = ri_inv; // c = nx * r`x + ny * r`y + auto d = 1 - c * c * (1 - m_cos1 * m_cos1); + if (d < 0) { + // TODO test TIR + if (Enable_TIR) { + // ri_inv < sin(a1), cannot refract, must reflect (Total Internal Reflection) + return reflect(r1); + } else { + d = -d; // abs, just make the sqrt has a real solution + } + } + const auto n2 = (r1 - dot(r1) * n) * c - sqrt(d) * n; + assert(n2.valid()); + return n2; + } }; // print to ostream @@ -115,33 +151,42 @@ inline std::ostream &operator<<(std::ostream &out, const vec3<T> &vec) { return out << "vec3[x=" << vec.x << ", y=" << vec.y << ", z=" << vec.z << ']'; } -// product vec3 by a scalar +// product vec3 by a scalar, with fp assertions template< typename T, typename S, typename = typename std::enable_if<std::is_arithmetic<S>::value, S>::type > inline vec3<T> operator*(const vec3<T> &vec, const S &b) { + if (std::is_floating_point<S>::value) { + assert(std::isfinite(b));; + } return vec3<T>{.x=(T) (vec.x * b), .y=(T) (vec.y * b), .z=(T) (vec.z * b)}; } -// product vec3 by a scalar +// product vec3 by a scalar, with fp assertions template< typename T, - typename S, - typename = typename std::enable_if<std::is_arithmetic<S>::value, S>::type + typename S > inline vec3<T> operator*(const S &b, const vec3<T> &vec) { + if (std::is_floating_point<S>::value) { + assert(std::isfinite(b)); + } return vec3<T>{.x=(T) (vec.x * b), .y=(T) (vec.y * b), .z=(T) (vec.z * b)}; } -// product vec3 by the inversion of a scalar (div by a scalar) +// product vec3 by the inversion of a scalar (div by a scalar), with fp assertions template< typename T, typename S, typename = typename std::enable_if<std::is_arithmetic<S>::value, S>::type > inline vec3<T> operator/(const vec3<T> &vec, const S &b) { + if (std::is_floating_point<S>::value) { + assert(std::isfinite(b)); + assert(b != 0); + } return vec3<T>{.x=(T) (vec.x / b), .y=(T) (vec.y / b), .z=(T) (vec.z / b)}; } |