// // Created by Keuin on 2022/4/11. // #ifndef RT_VEC_H #define RT_VEC_H #include #include static inline bool eq(int a, int b) { return a == b; } static inline bool eq(long long a, long long b) { return a == b; } static inline bool eq(double a, double b) { // FIXME broken on large values // https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ // https://stackoverflow.com/a/253874/14332799 const double c = a - b; return c <= 1e-14 && c >= -1e-14; } // 3-dim vector template struct vec3 { T x; T y; T z; static vec3 zero() { return vec3{0, 0, 0}; } vec3 operator+(const vec3 &b) const { return vec3{.x=x + b.x, .y=y + b.y, .z=z + b.z}; } vec3 operator-() const { return vec3{.x = -x, .y = -y, .z = -z}; } vec3 operator-(const vec3 &b) const { return *this + (-b); } bool operator==(const vec3 b) const { return eq(x, b.x) && eq(y, b.y) && eq(z, b.z); } // dot product (aka inner product, or scalar product, producing a scalar) T dot(const vec3 &b) const { return x * b.x + y * b.y + z * b.z; } // cross product (aka outer product, or vector product, producing a vector) vec3 cross(const vec3 &b) const { return vec3{.x=y * b.z - z * b.y, .y=x * b.z - z * b.x, .z=x * b.y - y * b.x}; } // norm value double norm(const int level = 2) const { if (level == 2) { return std::abs(sqrt(x * x + y * y + z * z)); } else if (level == 1) { return std::abs(x) + std::abs(y) + std::abs(z); } else { return powl(powl(x, level) + powl(y, level) + powl(z, level), 1.0 / level); } } // Squared module T mod2() const { return x * x + y * y + z * z; } vec3 unit_vec() const { return *this * (1.0 / norm()); } }; // print to ostream template inline std::ostream &operator<<(std::ostream &out, const vec3 &vec) { return out << "vec3[x=" << vec.x << ", y=" << vec.y << ", z=" << vec.z << ']'; } // product vec3 by a scalar template< typename T, typename S, typename = typename std::enable_if::value, S>::type > inline vec3 operator*(const vec3 &vec, const S &b) { return vec3{.x=(T) (vec.x * b), .y=(T) (vec.y * b), .z=(T) (vec.z * b)}; } // product vec3 by a scalar template< typename T, typename S, typename = typename std::enable_if::value, S>::type > inline vec3 operator*(const S &b, const vec3 &vec) { return vec3{.x=(T) (vec.x * b), .y=(T) (vec.y * b), .z=(T) (vec.z * b)}; } // product vec3 by the inversion of a scalar (div by a scalar) template< typename T, typename S, typename = typename std::enable_if::value, S>::type > inline vec3 operator/(const vec3 &vec, const S &b) { return vec3{.x=(T) (vec.x / b), .y=(T) (vec.y / b), .z=(T) (vec.z / b)}; } // scalar product (inner product) template inline T dot(const vec3 &a, const vec3 &b) { return a.dot(b); } // vector product (outer product) template inline vec3 cross(const vec3 &a, const vec3 &b) { return a.cross(b); } // 3-dim vector (int) using vec3i = vec3; // 3-dim vector (long long) using vec3l = vec3; // 3-dim vector (float) using vec3f = vec3; // 3-dim vector (double) using vec3d = vec3; // random unit vector generator template class random_uv_gen { std::mt19937_64 mt; std::uniform_real_distribution uni{-1.0, 1.0}; public: explicit random_uv_gen(uint64_t seed) : mt{seed} {} vec3 operator()() { while (true) { const auto x = uni(mt), y = uni(mt), z = uni(mt); const auto vec = vec3{.x=x, .y=y, .z=z}; if (vec.mod2() <= 1.0) return vec; } } }; using random_uv_gen_3d = random_uv_gen; #endif //RT_VEC_H