// // Created by Keuin on 2022/4/11. // #ifndef RT_VEC_H #define RT_VEC_H #include #include #include #include #include static inline bool eq(int a, int b) { return a == b; } static inline bool eq(long long a, long long b) { return a == b; } static inline bool eq(double a, double b) { // FIXME broken on large values // https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ // https://stackoverflow.com/a/253874/14332799 const double c = a - b; return c <= 1e-14 && c >= -1e-14; } // 3-dim vector template struct vec3 { T x; T y; T z; static vec3 zero() { return vec3{0, 0, 0}; } static vec3 one() { return vec3{1, 1, 1}; } bool is_zero() const { #define EPS (1e-8) return x >= -EPS && y >= -EPS && z >= -EPS && x <= EPS && y <= EPS && z <= EPS; #undef EPS } bool is_one() const { return (*this - vec3::one()).is_zero(); } vec3 operator+(const vec3 &b) const { return vec3{.x=x + b.x, .y=y + b.y, .z=z + b.z}; } vec3 operator-() const { return vec3{.x = -x, .y = -y, .z = -z}; } vec3 operator-(const vec3 &b) const { return *this + (-b); } bool operator==(const vec3 b) const { return eq(x, b.x) && eq(y, b.y) && eq(z, b.z); } // dot product (aka inner product, or scalar product, producing a scalar) T dot(const vec3 &b) const { return x * b.x + y * b.y + z * b.z; } // cross product (aka outer product, or vector product, producing a vector) vec3 cross(const vec3 &b) const { return vec3{.x=y * b.z - z * b.y, .y=z * b.x - x * b.z, .z=x * b.y - y * b.x}; } // Multiply with b on every dimension. vec3 scale(const vec3 &b) const { return vec3{.x=x * b.x, .y=y * b.y, .z=z * b.z}; } // norm value double norm(const int level = 2) const { if (level == 2) { return std::abs(sqrt(x * x + y * y + z * z)); } else if (level == 1) { return std::abs(x) + std::abs(y) + std::abs(z); } else { return powl(powl(x, level) + powl(y, level) + powl(z, level), 1.0 / level); } } // Squared module T mod2() const { return x * x + y * y + z * z; } vec3 unit_vec() const { return *this * (1.0 / norm()); } // If all the three float-point scalars are finite real number. bool valid() const { return std::isfinite(x) && std::isfinite(y) && std::isfinite(z); } // Determine if this vector is parallel with another one. bool parallel(const vec3 &other) const { const auto dt = dot(other); const auto dot2 = dt * dt; const auto sqlp = mod2() * other.mod2(); // squared length product const auto d = dot2 - sqlp; return d > -1e-6 && d < 1e-6; } // Get the reflected vector. Current vector is the normal vector (length should be 1), v is the incoming vector. vec3 reflect(const vec3 &v) const { assert(fabs(mod2() - 1.0) < 1e-8); return v - (2.0 * dot(v)) * (*this); } }; // print to ostream template inline std::ostream &operator<<(std::ostream &out, const vec3 &vec) { return out << "vec3[x=" << vec.x << ", y=" << vec.y << ", z=" << vec.z << ']'; } // product vec3 by a scalar, with fp assertions template< typename T, typename S, typename = typename std::enable_if::value, S>::type > inline vec3 operator*(const vec3 &vec, const S &b) { if (std::is_floating_point::value) { assert(std::isfinite(b));; } return vec3{.x=(T) (vec.x * b), .y=(T) (vec.y * b), .z=(T) (vec.z * b)}; } // product vec3 by a scalar, with fp assertions template< typename T, typename S > inline vec3 operator*(const S &b, const vec3 &vec) { if (std::is_floating_point::value) { assert(std::isfinite(b)); } return vec3{.x=(T) (vec.x * b), .y=(T) (vec.y * b), .z=(T) (vec.z * b)}; } // product vec3 by the inversion of a scalar (div by a scalar), with fp assertions template< typename T, typename S, typename = typename std::enable_if::value, S>::type > inline vec3 operator/(const vec3 &vec, const S &b) { if (std::is_floating_point::value) { assert(std::isfinite(b)); assert(b != 0); } return vec3{.x=(T) (vec.x / b), .y=(T) (vec.y / b), .z=(T) (vec.z / b)}; } // scalar product (inner product) template inline T dot(const vec3 &a, const vec3 &b) { return a.dot(b); } // vector product (outer product) template inline vec3 cross(const vec3 &a, const vec3 &b) { return a.cross(b); } // 3-dim vector (int) using vec3i = vec3; // 3-dim vector (long long) using vec3l = vec3; // 3-dim vector (float) using vec3f = vec3; // 3-dim vector (double) using vec3d = vec3; // random unit vector generator template class rand_vec_gen { std::mt19937_64 mt; std::uniform_real_distribution uni{-1.0, 1.0}; public: rand_vec_gen() = delete; explicit rand_vec_gen(uint64_t seed) : mt{seed} {} // Get a random vector whose length is in [0, 1] inline vec3 range01() { while (true) { const auto x = uni(mt), y = uni(mt), z = uni(mt); const auto vec = vec3{.x=x, .y=y, .z=z}; if (vec.mod2() <= 1.0) return vec.unit_vec(); } } // Get a random real number in range [0, 1]. inline T range01_scalar() { return uni(mt); }; // Get a unit vector with random direction. inline vec3 normalized() { return range01().unit_vec(); } // Get a random vector whose length is in [0, 1] and // has a direction difference less than 90 degree with given vector. inline vec3 hemisphere(vec3 &vec) { const auto v = range01(); if (dot(v, vec) > 0) return v; return -v; } }; using random_uv_gen_3d = rand_vec_gen; #endif //RT_VEC_H