#include #include #include #include #include #include #include #include #include const char *hexchars = "0123456789ABCDEF"; int pkcs7_check_pad(const char *buf, size_t n); typedef struct s_key_search_ctx { /* first 8 bytes and the last 8 bytes of the ciphertext * in encrypted QQ flash image */ uint64_t ciphertext[2]; /* if routine `yield_possible_key` returns true, * the possible 64-bit DES key will be stored here */ uint64_t yield; /* 4 byte effective key space */ uint32_t next_possible_key; bool finished; } key_search_ctx; /* constructor of type `key_search_ctx` */ void new_key_search_ctx( key_search_ctx *ctx, uint64_t ciphertext[2], uint32_t a ) { ctx->finished = false; ctx->next_possible_key = a; ctx->ciphertext[0] = ciphertext[0]; ctx->ciphertext[1] = ciphertext[1]; } /* search key in range [a, b), returns false if * no result yield from this call and searching is finished */ bool yield_possible_key( key_search_ctx *ctx, uint32_t b, atomic_bool *stop_signal ) { if (ctx->finished) return false; // const char[] hexchars = {0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, // 0x38, 0x39, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46}; #define FILL_KEY(buf, key, i) \ ((buf)[7-(i)] = hexchars[((key) >> (4*(i))) & 0xFu]) \ // buf: char[8], key: uint64_t, i:uint = 0, 1, 2, ..., 7 uint32_t k = ctx->next_possible_key; uint64_t plaintext; char key[8]; symmetric_key skey; do { if ((b != 0 && k >= b) || atomic_load(stop_signal)) { // out of range, stop ctx->finished = true; return false; } // convert key uint32 to char[] FILL_KEY(key, k, 0); FILL_KEY(key, k, 1); FILL_KEY(key, k, 2); FILL_KEY(key, k, 3); FILL_KEY(key, k, 4); FILL_KEY(key, k, 5); FILL_KEY(key, k, 6); FILL_KEY(key, k, 7); // decrypt file header with this key int err; if ((err = des_setup((const unsigned char *) key, 8, 0, &skey)) != CRYPT_OK) { fprintf(stderr, "Err: setup: %s", error_to_string(err)); return false; } /* decrypt the first 8 bytes */ if (des_ecb_decrypt( (const unsigned char *) (&ctx->ciphertext[0]), (unsigned char *) &plaintext, (const symmetric_key *) &skey ) != CRYPT_OK) continue; // failed to decrypt /* validate JPEG header (first 3 bytes) of the plaintext */ if ((plaintext & 0xFFFFFFu) != 0xFFD8FFu) continue; /* invalid JPEG header */ /* decrypt the last 8 bytes */ if (des_ecb_decrypt( (const unsigned char *) (&ctx->ciphertext[1]), (unsigned char *) &plaintext, (const symmetric_key *) &skey ) != CRYPT_OK) continue; // failed to decrypt if (pkcs7_check_pad((const char *) &plaintext, 8) < 0) continue; /* invalid pkcs7 padding */ /* all checks passed, this may be a valid key, yield it */ ctx->yield = *(uint64_t *) key; /* if `next_possible_key` goes out of range, * it means that we have searched all possible keys */ ctx->finished = ++ctx->next_possible_key >= b; return true; /* if b == 0 and k == 0, finish searching */ } while ((k = ++ctx->next_possible_key) || b != 0); ctx->finished = true; return false; } /* given buf, returns length of the pad, or -1 if * the data is not padded with valid pkcs7 */ int pkcs7_check_pad(const char *buf, size_t n) { if (!n) return -1; --n; unsigned char pad = buf[n--]; if (!pad) return -1; if (n < pad) return -1; // buf is shorter than a valid pad for (int i = pad; i > 1; --i) { if (buf[n--] != pad) return -1; } return pad; } /* initialized in main function */ typedef struct s_thread_param { /* search range */ uint32_t a; uint32_t b; int worker_id; } thread_param; /* if a worker find this to be true, it will terminate */ atomic_bool key_found; /* shared across workers */ const char *ciphertext; /* should not be modified by workers */ uint32_t ciphertext_len; /* the result generated by a lucky worker */ volatile struct { char *plaintext; uint32_t len; } crack_result; int thread_worker(thread_param *param) { key_search_ctx ctx; const uint32_t b = param->b; /* search end */ uint32_t ciphertext_length = ciphertext_len; uint64_t prefilter_ciphertext[2] = { *(uint64_t *) ciphertext, *((uint64_t *) (ciphertext + ciphertext_length) - 1) }; new_key_search_ctx(&ctx, prefilter_ciphertext, param->a); char *plaintext = malloc(ciphertext_length); if (plaintext == NULL) { perror("malloc"); return 1; } /* FOR DEBUGGING ONLY */ // assert(*(uint64_t *) ciphertext == 8022485120222247589ull); // ctx.next_possible_key = 0xA0979B6Du; while (yield_possible_key(&ctx, b, &key_found)) { /* found a possible correct key */ /* validate it by calculating md5 hashsum of the plaintext */ // printf("[worker#%d] Possible key: %zu\n", param->worker_id, ctx.yield); // fflush(stdout); /* decrypt the whole ciphertext */ int err; symmetric_key skey; if ((err = des_setup((const unsigned char *) (&ctx.yield), 8, 0, &skey)) != CRYPT_OK) { fprintf(stderr, "Err: setup: %s", error_to_string(err)); continue; } // TODO accelerate by checking the padding at first uint_fast32_t blk_cnt = ciphertext_length >> 3; for (uint_fast32_t blk = 0; blk < blk_cnt; ++blk) { des_ecb_decrypt( (const unsigned char *) ((uint64_t *) ciphertext + blk), (unsigned char *) ((uint64_t *) plaintext + blk), (const symmetric_key *) &skey ); /* error checking is unnecessary here */ } int pad_length = pkcs7_check_pad(plaintext, ciphertext_length); const unsigned int unpadded_length = ciphertext_length - pad_length; assert(pad_length < ciphertext_length); if (pad_length < 0) { /* invalid pad, this key is incorrect, skip it */ fprintf(stderr, "Invalid pad.\n"); continue; } /* calculate md5 checksum of the decrypted plaintext */ char md5_out[16]; hash_state md; md5_init(&md); md5_process(&md, (const unsigned char *) plaintext, unpadded_length); md5_done(&md, (unsigned char *) md5_out); /* compare md5_out[0~3] with 8-byte ASCII hex string ctx.yield */ /* hex of first 4-byte of md5_out, * 1 more byte to hold the '\0' terminator */ char md5_hex[8 + 1]; snprintf(md5_hex, 8 + 1, "%02X%02X%02X%02X", md5_out[0] & 0xFFu, md5_out[1] & 0xFFu, md5_out[2] & 0xFFu, md5_out[3] & 0xFFu); if (!memcmp(md5_hex, (const char *) (&ctx.yield), 8)) { atomic_store(&key_found, true); printf("[+] FOUND KEY: %zu\n", ctx.yield); crack_result.plaintext = plaintext; crack_result.len = unpadded_length; return 0; } /* otherwise the key is incorrect, continue searching */ } /* either key is not found, or another worker has found the key */ return 0; } int main(int argc, char *argv[]) { // uint64_t ciphertext = 8022485120222247589; // unsigned char plaintext[8]; // const char *key = "A0979B6D"; // symmetric_key skey; crack_result.plaintext = NULL; if (argc == 1) { USAGE: printf("Usage: %s " "[] " "[-j ]\n" "The decrypted image won't be saved if " "save path is not specified.\n" "threads: how many workers to run at the same time, " "default: 1\n", argv[0]); return 0; } const char *plaintext_save_path = (argc == 3) ? (argv[2]) : NULL; const char *ciphertext_file_path = argv[1]; /* open file */ FILE *fp; if (!(fp = fopen(ciphertext_file_path, "rb"))) { perror("fopen"); return 1; } /* validate file header */ char header[8]; if (fread(header, 1, 8, fp) != 8) { fprintf(stderr, "Cannot read first 8 bytes from file.\n"); return 1; } if (*(uint64_t *) header != *(uint64_t *) "ENCRYPT:") { fprintf(stderr, "Bad file header.\n"); return 1; } /* read ciphertext into memory */ fseek(fp, 0, SEEK_END); long file_length = ftell(fp); if (file_length <= 8) { fprintf(stderr, "Invalid file length (%ld)\n", file_length); return 1; } const unsigned long ciphertext_length = file_length - 8; if (ciphertext_length % 8 != 0) { fprintf(stderr, "Invalid file length: %ld can not be divided by 8.\n", file_length); return 1; } char *ciphertext_buf = malloc(ciphertext_length); /* this buffer is for the future decryption usage, * storing padded plaintext (pkcs7) */ char *plaintext = malloc(ciphertext_length); if (ciphertext_buf == NULL || plaintext == NULL) { perror("malloc"); return 1; } fseek(fp, 8, SEEK_SET); if (fread(ciphertext_buf, 1, ciphertext_length, fp) != ciphertext_length) { fprintf(stderr, "Cannot read the whole file.\n"); return 1; } ciphertext = ciphertext_buf; ciphertext_len = ciphertext_length; int threads = 1; /* read thread count from argv */ for (int i = 1; i < argc; ++i) { if (!strcmp(argv[i], "-j")) { if (i == argc - 1) { printf("-j requires an integer parameter.\n"); goto USAGE; } errno = 0; threads = strtol(argv[i + 1], NULL, 10); if (errno) { printf("Invalid thread count number.\n"); goto USAGE; /* invalid integer */ } break; } } /* start searching */ printf("Searching key (using %d workers)...\n", threads); fflush(stdout); atomic_store(&key_found, false); thrd_t *thread_ids; thread_param *thread_params; if ((thread_ids = malloc(sizeof(thrd_t) * threads)) == NULL) { perror("malloc"); return 1; } if ((thread_params = malloc(sizeof(thread_param) * threads)) == NULL) { perror("malloc"); return 1; } /* assign search ranges to workers */ uint32_t range_size = 0xFFFFFFFFu / threads; for (int i = 0; i < threads; ++i) { thread_params[i].a = range_size * i; thread_params[i].b = range_size * i + range_size; thread_params[i].worker_id = i; } /* the last search range should warp */ thread_params[threads - 1].b = 0; /* start workers */ for (int i = 0; i < threads; ++i) { if (thrd_create( &thread_ids[i], (thrd_start_t) thread_worker, &thread_params[i]) != thrd_success) { fprintf(stderr, "Cannot start thread %d.\n", i); return 1; } } /* wait for all workers to terminate */ for (int i = 0; i < threads; ++i) { int ret; thrd_join(thread_ids[i], &ret); if (ret) { fprintf(stderr, "Worker terminated with error code %d.\n", ret); } } /* save decrypted data */ if (crack_result.plaintext != NULL && plaintext_save_path) { FILE *fout = fopen(plaintext_save_path, "wb"); if (!fout) { perror("Cannot open file for saving"); return 1; } fwrite(crack_result.plaintext, 1, crack_result.len, fout); fclose(fout); printf("Flash photo has been saved in: %s\n", plaintext_save_path); } return 0; }